Conductive-AFM Patterning of Organic Semiconductors.
نویسندگان
چکیده
Using a conductive atomic force microscope (c-AFM) redox-writing technique, it is shown that it is possible to locally, and reversibly, pattern conducting, and nonconducting features on the surface of a low molecular weight aniline-based organic (semi)-conductor thin film using a commercial c-AFM. It is shown that application of a voltage between the tip and sample causes localized redox reactions at the surface without damage.
منابع مشابه
Exact Analytical Solution for Electrostatic Field Produced by Biased Atomic Force Microscope Tip Dwelling above Dielectric-conductor Bi-layer
Atomic Force Microscopy is an important tool for nanoscale modifications in metals, semiconductors, and soft condensed matter. Polymers suggest clear advantage with respect to the other materials in such fields as data storage and sacrificial patterning. Recently, an electrostatic nanolithography based on AFM [1,2] suggested a way of patterning nanostructures in thin (10-50 nm) dielectric films...
متن کاملDefects in nitride semiconductors: From nanoscale imaging to macroscopic device behavior
Scanning capacitance microscopy (SCM), atomic force microscopy (AFM), and conductive AFM are used to image the spatial distribution and electronic properties of threading dislocations in AlxGa1 xN/GaN epitaxial layers grown by molecular-beam epitaxy. SCM imaging reveals that GaN growth directly on SiC substrates leads to clustering of negatively charged dislocations at nucleation island boundar...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملTowards a unified description of the charge transport mechanisms in conductive atomic force microscopy studies of semiconducting polymers.
In this work, conductive atomic force microscopy (C-AFM) is used to study the local electrical properties in thin films of self-organized fibrillate poly(3-hexylthiophene) (P3HT), as a reference polymer semiconductor. Depending on the geometrical confinement in the transport channel, the C-AFM current is shown to be governed either by the charge transport in the film or by the carrier injection...
متن کاملFabrication and Device Simulation of Single Nano-Scale Organic Static Induction Transistors
A well-defined test structure of organic static-induction transistor (SIT) having regularly sized nano-apertures in the gate electrode has been fabricated by colloidal lithography using 130-nm-diameter polystyrene spheres as shadow masks during vacuum deposition. Transistor characteristics of individual nano-apertures, namely ‘nano-SIT,’ have been measured using a conductive atomic-force-micros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 11 38 شماره
صفحات -
تاریخ انتشار 2015